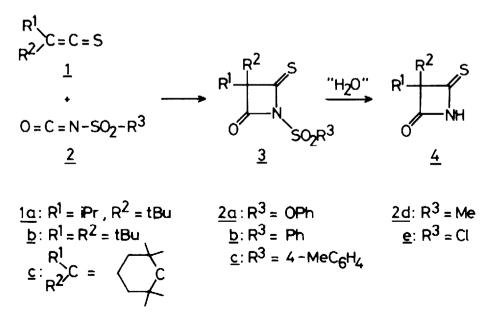
4-THIOXO-2-AZETIDINONES BY CYCLOADDITION OF THIOKETENES WITH ISOCYANATES


Ernst Schaumann *, Armin Röhr, and Gunadi Adiwidjaja

Institut für Organische Chemie und Biochemie der Universität Hamburg

Martin-Luther-King-Platz 6, D-2000 Hamburg 13, W. Germany

Summary - The (2+2) cycloaddition of thioketenes <u>1</u> with isocyanates <u>2</u> yields 4-thioxo-2azetidinones <u>3</u>, which can be hydrolyzed to the N-unsubstituted compounds <u>4</u> and thus used as versatile intermediates.

4-Thioxo-2-azetidinones (monothiomalonimides) represent interesting building-blocks for heterocyclic synthesis, particularly for modifications of β -lactam antibiotics. The available methodology for the synthesis of these compounds involves multi-step procedures. ¹⁻³⁾ A simple approach to the four-membered ring system should be provided by the (2+2) cycloaddition of thioketenes <u>1</u> with isocyanates <u>2</u>, if, as is the case in the reaction with azomethines, ⁴⁾ the C=C bond of <u>1</u> is the reactive site. Furthermore, removal of the N-sulfonyl residue should afford the hitherto unknown N-unsubstituted 4-thioxo-2-azetidinones.

The sterically hindered thicketenes $\underline{1a-c}^{5}$ require heating at 100 - 150°C for 12 - 48 hours for complete reaction with the isocyanates $\underline{2a-d}$. Chromatographic workup then yields yellow 1:1 adducts as main products. The constitution $\underline{3}$ can be derived from IR absorptions at high wavenumber characteristic of a carbonyl group in a four-membered ring and from UV bands in the visible range, which are readily assigned to the n $\rightarrow \pi^*$ transition of a thiocarbonyl group (Table). Moreover, 13 C NMR signals at $\hat{o} = 198.3$ and 169.7 ($\underline{3c}$) or 205.6 and 167.9 ($\underline{3e}$) prove the presence of thiocarbonyl and carbonyl carbons. Thus, the cycloaddition takes place between the C=C bond of $\underline{1}$ and the C=N bond of $\underline{2}$.

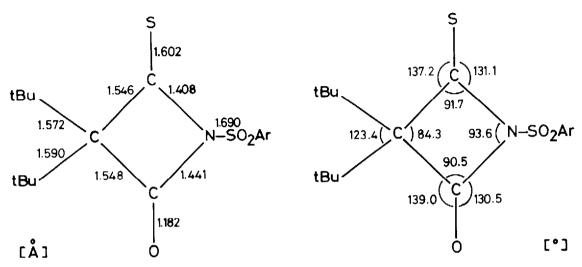


Figure. Schematic presentation of important bond distances and angles in the crystal structure of $\underline{3b}$

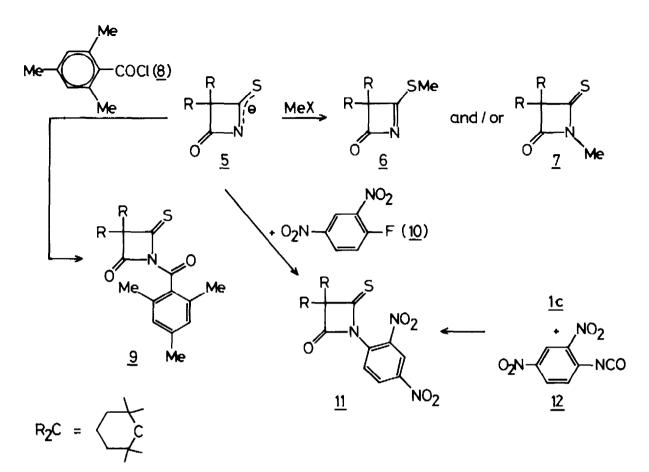
A final proof of the structure <u>3</u> was obtained by an X-ray crystallographic analysis of <u>3b</u> (Figure). ⁶⁾ Striking features are the comparatively long endocyclic C-N bonds and the very short C=O and C=S bond lengths. In fact, the C=S bond distance appears to be one of the shortest reported for a $C(sp^2)-S(sp^2)$ bond, even shorter than d(C=S) in thioformaldehyde (1.611 A^{7}) . Obviously, the electron-withdrawing effect of the N-sulfonyl residue ⁸⁾ and the inherent ring strain work together in <u>3</u> to suppress the usual mesomeric interaction in (thio)amide systems. In this situation the difference in the N - C=O/C=S distances indicates that the thioamide mesomerism is maintained relatively to a larger extent than the interaction within the N-CO moiety.

Thioxoazetidinones <u>3a-e</u> are essentially stable toward acid hydrolysis. Action of sodium ethanolate (ethanol, 20 min reflux) on <u>3c-e</u> leads to complete cleavage of the N - SO₂ bond. Usual workup affords the N-unsubstituted compound <u>4c</u> as well as ethylated derivatives of type 6 and 7 as the ethyl sulfonate formed partially alkylates the anion <u>5</u>.

A more convenient approach to compounds $\underline{4}$ is offered by the reaction of chlorosulfonyl isocyanate ($\underline{2e}$) with thicketenes $\underline{1}$ (ether, 20° , 3 days). Here the expected cycloadducts $\underline{3}$ ($\mathbb{R}^3 = \mathrm{SO}_2\mathrm{Cl}$) are highly labile and cannot be isolated. Chromatography (ethyl acetate/ petroleum ether 1:4 for $\underline{4a}$, dichloromethane/petroleum ether 1:1 for $\underline{4b}, \underline{c}$) gives $\underline{4}$ in fair

yields (Table).

N-Unsubstituted thioxoazetidinones <u>4</u> are readily converted into their anions (e. g. <u>5</u>) by action of sodium hydride or alkanolate. The expected ambident reactivity of <u>5</u> is verified by different methylation reactions. Methyl iodide (ether, 30 min reflux) gives exclusively the S-methyl compound <u>6</u>. The structure is obvious from a ¹H NMR signal at $\delta = 2.62$ (CCl₄) and the absence of an $n \rightarrow \pi^*$ transition in the UV spectrum (Table). The ¹³C NMR data may be misleading since besides $\delta = 180.0$ for the carbonyl group a low-field resonance at $\delta = 213.9$ might be interpreted in terms of a thiocarbonyl carbon. However, the assignment to $\delta_{C=N}$ is suggested by splitting into a quartet (³J_{HC} = 2.3 Hz) in the proton-undecoupled spectrum, and the deshielding of imino carbons on conjugation with carbonyl groups is known from similar examples. ⁹


Table. Yields, melting-points, and important spectroscopic data of the new compounds ¹¹⁾

Compd	Reactants	Yield [%]	m. p. [°C]	$\tilde{v}_{\rm NH}$	IR (KBr) v _{CO} [cm ⁻¹]	UV (Isooctane) 入 [nm] (lg £)	
$\frac{\frac{3a}{3b}}{\frac{3c}{3c}}$	$\frac{1a}{1b} + \frac{2a}{2c}$	83 29	28-31 132-134	-	1835 1825	- a) 234(4.3), 261(4.2),	420(1 2)
<u>3c</u>		76	81-82	-	1830	258(4.1), 434(1.3)	430(1.3)
<u>3d</u>	1c + 2b	59	137-138			235(4.2), 258(4.2),	431(1.3)
	<u>1c</u> + 2d	69			1830	252(4.1), 425(1.3)	
<u>4a</u>					1810(sh),1775	- a)	
4b	<u>1b</u> + <u>2e</u>	35			1805		
4c	<u>1c</u> + <u>2e</u>	47	172-175(dec.)	3240	1805, 1785	257(4.1), 405(1.2)	
6	4c + MeI	56	96-101(dec.)	-	1780	252(4.1), 320(1.9)	
_	$\overline{4c}$ + TsOMe	50					
7	$\overline{4c}$ + TsOMe	33	118-132(dec.)	-	1795	265(4.2), 396(1.4)	
9	4c + 8	77	93-105	-	1835,1815,1725	263(4.2), 325(sh),	460(1.5)
$\frac{4a}{4b}$ $\frac{4c}{6}$ $\frac{7}{9}$ $1\overline{1}$	$\frac{1}{4c} + 10$		163-165		1820	315(sh), 430(sh),	
	1c + 12	4				258(4.4), 297(4.1)	

a) Not measured.

In agreement with experiences from enolate alkylations, $^{10)}$ the more pronounced polarity control in the alkylation of <u>4</u> with methyl tosylate (NaOMe, MeOH, 20°C, 12 h) leads to a mixture of S- and N-methyl products <u>6</u> and <u>7</u>, in which <u>6</u> still predominates in spite of the apparent ring strain of this azetine (Table). The constitution <u>7</u> is substantiated by the UV data (Table) and by NMR signals at δ = 213.1 and 175.6 for the thiocarbonyl and carbonyl carbons.

Acylation of 5 with mesitoyl chloride proceeds readily at 20°C to afford the N-acyl derivative 9. No S-acyl compound could be detected. The presence of the thiocarbonyl group in 9 is deduced from the UV spectrum (Table) and from a ¹³C NMR signal at 8 = 207.3 ($\delta_{C=0}$ = 171.5, 165.2). Also the fluoride <u>10</u> is attacked by 5 only via nitrogen to furnish the β -lactam <u>11</u>. Besides the spectroscopic evidence (Table) structure <u>11</u> could be proven by an independent synthesis by way of a (2+2) cycloaddition of thioketene <u>1c</u> with 2,4-dinitrophenyl isocyanate (12).

The use of thioxoazetidinones 4 for the synthesis of penam and cepham derivatives is currently under investigation.

Acknowledgement - We thank Professor W. Walter for his kind interest in this work and the Hoechst AG for a generous gift of chlorosulfonyl isocyanate.

References and Notes

- M. D. Bachi and J. Vaya, J. Am. Chem. Soc. <u>98</u>, 7825 (1976). M. D. Bachi, O. Goldberg, A. Gross, and J. Vaya, <u>J. Org. Chem. <u>45</u>, 1477 (1980).
 T. S. Chou, G. A. Koppel, D. E. Dorman, and J. W. Paschal, <u>J.Am.Chem.Soc. <u>98</u>, 7864 (1976).
 </u></u>

- A. Brandt, L. Bassignani, and L. Re, Tetrahedron Lett. <u>1976</u>, 3975.
 Schaumann, <u>Chem.Ber.</u> <u>109</u>, 906 (1976). E. Schaumann and J. Ehlers, <u>ibid.<u>112</u>,1000(1979).
 E. U. Elam, F. H. Rash, J. T. Dougherty, V. W. Goodlett, and K. C. Brannock, <u>J.Org.Chem.</u>
 </u>
- 33, 2738 (1968).- E. Schaumann and W. Walter, Chem. Ber. <u>107</u>, 3562 (1974).
 6) Crystal data, list of refined co-ordinates, ORTEP presentation, and table of bond distances have been deposited with the Cambridge Data Centre.
- 7) D. R. Johnson, F. X. Powell, and W. H. Kirchhoff, J. <u>Mol. Spectrosc. 39</u>, 136 (1971).
- 8) W. Walter, J. Holst, and A. Röhr, Liebigs Ann. Chem. <u>1975</u>, 54.
 9) J. Lukáč and H. Heimgartner, <u>Helv. Chim. Acta 62</u>, 1236 (1979). E. Schaumann, S. Grabley, F.-F. Grabley, E. Kausch, and G. Adiwidjaja, Liebigs Ann. Chem., submitted for publication (May 1980).
- 10) W. J. Le Noble and H. F. Morris, J. Org. Chem. <u>34</u>, 1969 (1969).
- 11) All new compounds gave satisfactory microanalytical data. The ¹H NMR spectra were in accord with the proposed structures.

(Received in Germany 18 August 1980)